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N U M E R I C A L  M O D E L I N G  O F  T H E  P R O C E S S  O F  
E M P L Y I N G  A T A N K  W I T H  A C R Y O G E N I C  L I Q U I D  

V. V. Volkov UDC 532:536 

Results of  calculation o f  temperature and velocity f ields m a cylindrical vessel with a cryogenic liquid (l iquid 

hydrogen) upon its emptying are discussed. A problem is formulated for a viscous incompressible f lu id  at 

thermal boundary conditions o f  the first kind. Streamlines and isotherms for  a variable f luid column are 

presented. Solutions are obtained for Rayleigh Ra  - 107 ... 101~ and Reynolds Re  =. 10 J ... 104 numbers. 

Construction of correct physical and adequate mathematical models of convective heat transfer processes 

in power-plant reservoirs under storage and consumption conditions of heat agents and in fuel tanks of aircraft is 
necessary for development of methods to increase the effectiveness of thermal-power systems and engines. In other 
words, theoretically based possibilities emerge to improve specific characteristics of converting thermal energy into 
performance power or its transfer. 

In the present work we provide the results of a numerical solution of the problem of mixed free and forced 

convection in a liquid with its changing volume and thermal boundary conditions of the first kind. A problem is 
modeled of emptying of a cylindrical fuel tank in its upright position of a liquid component under  highly 
nonisothermal conditions, e.g., with use of cryogenic fuel components (hydrogen or oxygen). 

Liquid displacement from the tank with a prescribed flow rate causes forceds convection in the liquid 
volume. At the same time, the temperature differehce between the liquid and the surrounding medium in the 
presence of the gravity field results in free convection of the liquid. In this case, the temperature field formed in 

the liquid with a change in its volume (tank emptying) determines, to a considerable degree, the working conditions 
of the tank as an element of the feed system of a power plant, i.e., the space-time variation of the temperature in 
the liquid volume is to be sought when estimating operation parameters, namely, the pressure or the flow rate when 
the liquid is drained from the tank. 

In the adopted formulation of the problem, we consider an upright cylindrical vessel partially filled with a 
liquid or filled to height H and having a side generatrix prescribed by the equation R ffi 7,(z). The specific heat 

fluxes qw, qs, qg are supplied to the side wall of the vessel, the free surface of the liquid (water table), and the flat 
bottom, respectively, or the temperatures are prescribed. The mass force is directed downwards parallel to the 
z-axis. The vessel bottom has a round hole with radius r 0 = 0.1R through which a liquid can inflow or outflow at 

a constant flow rate. In this case, the vertical velocity V, which is constant with respect to the radius, is prescribed 
on the flat free surface of the liquid. The velocity changes in inverse proportion to the cross-sectional area of the 
tank in accordance with the flow rate. 

The problem is solved in dimensionless form in a two-dimensional nonstationary formulation in cylindrical 
r, z-coordinates. To reduce the equations of conservation (of motion, energy, and discontinuity) to dimensionless 
form, the following relationships between dimensional and dimensionless quantities are introduced [1 ]: 

T - T O . 

7 =  r / R ;  -~= z / R ;  H o =  V ~ / R ,  (I) 
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where T and TO is the liquid temperature at an arbitrary point of the volume and at the initial moment. 

The quantities with a bar indicate the corresponding dimensionless variables. Henceforth the upper bar in 

the dimensionless equations is omitted. 

Upon introducing dimensionless variables of form (1) and (2), the equations of conservation, the initial 

and boundary conditions will be written as 

OU + u ~ + v - - =  -- + - -  + r2 
OHo Or Oz Or Re~Or  2 r Or Oz2) ' 

ol, + u O V + v ~ = _  + - -  + - ~ +  + ~ ,  (3) 

0Ho dr Oz dz Re l a r  2 �9 Or az2J Re 2 

0u u o%' 
+ - o, (4) 

Or r Oz 

oO + u _ _ + v  _ - -  + - - - +  . ( 5 )  

0rio Or Oz Pr Re r Or 

The similarity numbers in (3) and (5) are the Grashof number Gr = ~6(Tw - To)R3/v2;  the Reynolds number Re 

�9 = V R / v ;  the Prandfl number Pr = v / a ;  dimensionless time (homochronocity) Ho = V t / R .  

In writing the boundary conditions for the equation of motion, use is made of the ordinary boundary 

conditions for a viscous fluid, i.e., adhesion on solid walls and flow axisymmetry, are adopted. 

The initial conditions are prescribed in form of the known functions u O, v O, 0 0. The temperature field was 

assumed to be either uniform or have vertical stratification after prolonged storage in accordance with the linear 

law 0 = 0 near the bottom and 0 = I near the free surface. 

The liquid at the initial moment was assumed to be at rest: u 0 -- v 0 = 0. 

For numerical solution the initial system of Eqs. (2)-(5) and the boundary conditions were transformed 

by introducing the eddy function w and the stream function W [l ] satisfying the relations 

The problem discussed has some specific features to be allowed for in its solution, namely, that the velocity 

and temperature fields undergo the largest changes near the side wall, where a boundary layer is formed. For this, 

one more transformation of the coordinates was made: 

1 r = l l n ( 1  + ( e  n l -  1) r l ) ,  z = - - I n ( 1  + ( e  m l -  1) z l ) .  (7) 
n I m 1 

In so doing, the integration region was deformed in the direction of the 0r2- and 0z2-axes. The degree of contraction 

is controlled by the parameters nl and ml, the values of which are determined by the uniformity of the integration 

network: nl = ml = 0.3. 

The algorithm is based on the difference schemes proposed by V. I. Polezhaev for solving the equations of 

a viscous incompressible fluid [1, 2]. To approximate the differential operators, central differences and an 

approximation by directional differences [2 ] were employed. Use of the directional differences allowed an increase 

in the upper limit of the Rayleigh and Reynolds numbers. 

Approximation of the boundary conditions of the vortex equation was made using approximate boundary 

conditions, which can be obtained by either Taylor series expansion of the stream function g, near the boundary 
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Fig. 1. Streamlines (A) and isotherms (B) for the ease of homogeneous liquid 

discharge (Re -- 5000; Ra -- 101~ a) Ho = 1; b) 3; c) 5. 
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Fig. 2. Streamlines (A) and isotherms (B) for the case of nonisothermal  liquid 

discharge (Re, Ra, and Ho are the same as in Fig. 13. 

or using the procedure [1 ] for solving the equations of a viscous incompressible fluid in terms of the variables 
~ - ~ o -  ~. 

Following the model described above, we composed a program in FORTRAN.  Calculations were made  for 

Rayleigh 107 < Ra _< 10 l~ and Reynolds 1000 ___ Re _< 10,000 numbers  at Pr  = 1 (Pr  = I corresponds to liquid 

hydrogen in the saturation state).  Over the drain hole, a constant velocity and intake radius "in -- 0.1R were 

prescribed. The  initial height of filling was lo -- 6R, the final height - /0 -- R. 

Figure l shows a s t ructure of mixed convection in the case of vessel emptying and tempera ture  fields for 

an initially homogeneous liquid. Note that an increase of the rate of vessel emptying considerably changes the 

macrovorticity structure of the flow in the volume: from a marked influence of the macrovortex caused by the free 

lifting convection of the fluid near  the wall at low Reynolds  numbers  (Re _< 2000, Ran = 101~ to a decrease  in the 

region of its spreading, and the intensity at Re ___ 8000, Ran -- 101~ The  center  of this vortex is displaced downward 

along the wall. 

Owing to the appearance (as in the case of vessel filling) of a more heated liquid (as compared to its basic 

mass) over the vessel axis, an inverse vortex is formed there. We estimated the boundary  of its emergence near  

the axis and found that it occurs at R a / R e  2 >_- 1027. 

A comparison of the dimensionless isotherms for the regimes considered reveals that an increase in the 

fluid flow rate markedly decreases temperature stratification with respect to the height of the fluid volume as 

compared to the regime of filling at a lower flow rate. 

Figure 2 shows the flow picture and the temperature  field for the case of nonisothermal  liquid drain.  The  

drain of the stratif ied liquid is characterized by a decrease in the free-convection vortex as compared to the 
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homogeneous liquid discharge. Moreover, in the case of the nonisothermal liquid drain no reverse vortices are seen 
over the axis. 

It is established that at first heat transfer is mainly determined by the Reynolds number. Then the 
developing free-convective flow begins to exert a pronounced influence. At the end of emptying at small heights of 
filling ( lmin/R = 1) the influence of the Reynolds number is again considerable (the forced flow suppresses the 

free-convective vortex). For calculating the Nusselt number (drain of the homogeneous liquid) the following 
generalized relation is obtained 

N--~R = 10 -1'15 RaO.OS Re 0-7 " 

The developed model permits one to make variant calculations of convective heat transfer in a variable 

volume of liquid under nonisothermal conditions and to obtain substantiated recommendations for optimization of 
the regimes of filling and emptying of vessels and tanks. 

N O T A T I O N  

a, thermal diffusivity; go gravity acceleration;/o, current height of tank filling; p, pressure; q, specific heat 

flux; R, maximum radius of the tank; r, radial coordinate; rm, intake radius; T 0, initial temperature; Tw, wall 
temperature; V, velocity scale; u, v, projections of the velocity vector on the Or, 0z-ceordinate axes; z, vertical 
coordinate; r ,  volume expansion coefficient; p, density; ~l, thermal conductivity; v, kinematic viscosity; ~0, stream 

function; w, eddy function; Gr = ~ (Tw - T o ) R 3 / v  2, Grashof number; Re = V R / v ,  Reynolds number; Pr ffi v / a ,  

Prand t l  number ;  Ho m V t / R ,  dimensionless time (homochromaticity number);  0 = ( T -  T O ) / ( T  w - To), 

dimensionless temperature; ~ = u~ V, dimensionless horizontal velocity; ~ - v~ V, dimensionless vertical velocity; 
Nu R •ffi aR/3 t ,  Nusselt number. 
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